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a b s t r a c t

Posttraumatic stress disorder (PTSD) worsens prognosis following mild traumatic brain injury (mTBI).
Combat personnel with histories of mTBI exhibit abnormal activation of distributed brain networks—
including emotion processing and default mode networks. How developing PTSD further affects these
abnormalities has not been directly examined. We recorded electroencephalography in combat veterans
with histories of mTBI, but without active PTSD (mTBI only, n¼16) and combat veterans who developed
PTSD after mTBI (mTBIþPTSD, n¼16)—during the Reading the Mind in the Eyes Test (RMET), a validated
test of empathy requiring emotional appraisal of facial features. Task-related event related potentials
(ERPs) were identified, decomposed using independent component analysis (ICA) and localized
anatomically using dipole modeling. We observed larger emotional face processing ERPs in veterans
with mTBIþPTSD, including greater N300 negativity. Furthermore, greater N300 negativity correlated
with greater PTSD severity, especially avoidance/numbing and hyperarousal symptom clusters. This
correlation was dependent on contributions from the precuneus and posterior cingulate cortex (PCC).
Our results support a model where, in combat veterans with histories of mTBI, larger ERPs from over-
active posterior–medial cortical areas may be specific to PTSD, and is likely related to negative self-
referential activity.

Published by Elsevier B.V.

1. Introduction

Up to twenty percent of combat personnel in Iraq or Afghani-
stan experience mild traumatic brain injury—mTBI (Tanelian and
Jaycox, 2008). While conventional brain imaging is negative
following mTBI (Vasterling et al., 2012b), mTBI is associated with
mechanical and metabolic damage to white matter tracts connect-
ing distant brain areas (Arfanakis et al., 2002; Davenport et al.,
2012; Jorge et al., 2012; Mac Donald et al., 2011; Matthews et al.,
2012; Morey et al., 2012). Consistent with white matter damage,
patients with histories of mTBI exhibit abnormal connectivity
within distributed, resting brain networks, including the default
mode network (DMN) – with generally decreased connectivity
among DMN areas including the anterior and posterior cingulate –

ACC, PCC (Johnson et al., 2012; Mayer et al., 2011; Stevens et al.,
2012; Zhang et al., 2012; Zhou et al., 2012).

PTSD is common in combat personnel with histories of mTBI
and further worsens outcomes following mTBI (Polusny et al.,
2011; Vasterling et al., 2012a). Functional magnetic resonance
imaging (fMRI) studies of patients with active PTSD or histories
of mTBI suggest these populations share abnormalities in dorso-
lateral prefrontal, middle frontal and orbitofrontal brain activity
(Simmons and Matthews, 2012; Stein and McAllister, 2009). In
contrast to generally decreased DMN connectivity in patients with
histories of mTBI, PTSD is generally associated with increased
DMN connectivity (Daniels et al., 2010; Lanius et al., 2010a;
Rabinak et al., 2011; Sripada et al., 2012; Yin et al., 2011).
Processing trauma-related stimuli is also associated with increased
activation of posterior DMN areas—precuneus, PCC, retrosplenial
cortex (Ramage et al., 2012; Sartory et al., 2013), raising the
possibility that increased resting DMN activity in patients with
PTSD arises from more negative self-referential activity, including
recall of traumatic memories.
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In addition to DMN abnormalities, PTSD is associated with
abnormal cortical-limbic regulation of emotional activity (Lanius
et al., 2010b). For example, fMRI studies of emotion processing in
combat personnel with PTSD have observed over-active ventro-
medial, cingulate and limbic activity, and deficient frontal activity,
including in subjects with histories of mTBI (Herringa et al., 2012;
Matthews et al., 2011; Pannu Hayes et al., 2009; Roy et al., 2010;
Scheibel et al., 2012; Simmons et al., 2011, 2013). Patients with
PTSD also exhibit over-active event-related potentials (ERPs) when
presented with trauma-related stimuli during electroencephalop-
graphy—EEG (Javanbakht et al., 2011). More specifically, trauma-
related distractors during oddball tasks consistently produce
increased P3 amplitudes in veterans with combat-related PTSD
(Attias et al., 1996; Stanford et al., 2001). P3 and related ERPs also
source localize to areas abnormally activated in patients with
PTSD, including the ACC and PCC (Albert et al., 2012; Campanella
et al., 2013; Zhang and Lu, 2012).

To date, there are no published ERP studies of emotion proces-
sing in patients with PTSD after mTBI. ERP studies involving
patients with histories of only mTBI have focused primarily on
civilian injuries from sports, accidents or assaults, without speci-
fically examining PTSD. These studies have involved primarily
cognitive tasks, generally finding normal, attenuated or slower
brain responses in patients with histories of mTBI only (Broglio
et al., 2011; Larson et al., 2012; Larson et al., 2011).

Studies directly examining differences in brain activity between
patients with histories of mTBI only and patients with PTSD after
mTBI would improve our understanding of neural mechanisms
underlying the negative effects of PTSD on outcomes following
mTBI. Patients with PTSD generally exhibit over-active ACC and
PCC activity, at rest or when processing trauma-related or emo-
tional stimuli. Thus, we hypothesized that, compared to veterans
with histories of mTBI only, veterans with PTSD after mTBI would
exhibit over-active P3 or related ERPs that source localize to the
cingulate cortex. To test our hypothesis, we recorded EEG in
veterans with histories of mTBI only (mTBI only) or PTSD after
mTBI (mTBIþPTSD) during the Reading the Mind in the Eyes Test
(RMET). As a validated test of empathy, the RMET requires
emotional self appraisal in response to images of eyes cropped
from portraits of human faces. Although RMET performance was
not impaired in one study of individuals with civilian PTSD—
assault, occupational accidents, natural disasters (Nietlisbach et al.,
2010), individuals with PTSD from combat in Iraq exhibit impaired
RMET performance (Mazza et al., 2012). To date, RMET perfor-
mance has not been examined in patients with mTBI, including
those with PTSD after mTBI.

2. Materials and methods

2.1. Subjects

Thirty-two (16mTBI only; 16 mTBIþPTSD) male Operation Iraqi
Freedom/Operation Enduring Freedom (OEF/OIF) combat veterans
provided written informed consent and completed this cross-
sectional study, which was conducted from 2010 to 2012 and
was approved by the University of California San Diego Human
Research Protection Program and the Veterans Affairs San Diego
Healthcare System (VASDHS) Research and Development Commit-
tee. Subjects were recruited from VASDHS clinical services through
paper and electronic advertisements and word of mouth.

All subjects completed 2 sessions. During session 1, subjects
completed a detailed clinical assessment, which involved admin-
istration of the Brief Traumatic Brain Injury Screen (Schwab et al.,
2007), the Structured Clinical Interview for DSM-IV-TR (First et al.,
2002), the Clinician-Administered PTSD Scale (CAPS) (Weathers

et al., 2001) and Beck Depression Inventory 2 (BDI2) (Beck et al.,
1996). Subjects were included if they reported experiencing 1 or
more mTBI events during combat (i.e., a blast exposure or a blow
or jolt to the head), that resulted in a loss or alteration of
consciousness of 20 min or less. Health records related to mTBI
were not available; therefore, subjects' recall of trauma history
could not be confirmed. Subjects meeting criteria for current PTSD
– CAPS 465 per Weathers and colleagues, 2001 (Weathers et al.,
2001) – were included in the mTBIþPTSD group (n¼16). Subjects
not meeting current PTSD criteria were included in the mTBI only
group (n¼16)—though the mean (and standard deviation) for the
mTBI only group being 36.8 (13.1) suggested subthreshold PTSD
symptoms. Exclusion criteria included: (1) meeting criteria for an
alcohol or substance use disorder within the past 30 days; (2) life-
time history of bipolar disorder, attention deficit hyperactivity
disorder, or psychotic disorder; or (3) acute medical problems.
During session 2, subjects completed the Reading the Mind in the
Eyes Test (RMET) during EEG.

2.2. Task

During the RMET (www.autismresearchcentre.com/arc_tests),
subjects were presented, in a series, 36 different images of eyes
cropped from photographs of human faces (Fig. 1). Subjects were
instructed to choose, from the 4 words at the corners, the one
word that best matches the other's mental state. The images,
4 possible answers, and the 1 correct answer were selected from
field trials where healthy controls chose the correct answer 70–80%
of the time (Baron-Cohen et al., 2001). The task is not timed and is
scored on accuracy.

2.3. EEG acquisition and preprocessing

EEG data were collected synchronously from 132 scalp and 4
infra-ocular electrodes with an active reference (BioSemi Instru-
mentation, Amsterdam) at a sampling rate of 512 Hz with 24-bit A/D
resolution. Onsets and offsets of RMET visual stimuli, as well
subjects' button presses, were recorded in a simultaneously acquired
event channel. Electrodes and water-based conductive gel were
pressed into plastic wells on caps with a custom whole-head
montage covering most of the skull, forehead, and superior tem-
poral face surface.

Data were analyzed by custom MATLAB (The MathWorks, Inc.,
Natick, MA, USA) scripts built on the open source EEGLAB
environment (http://sccn.ucsd.edu/eeglab) (Delorme et al., 2011).
Data were re-referenced to average reference and digitally filtered
to emphasize frequencies above 1 Hz. Data periods containing
broadly distributed, high-amplitude muscle noise and other irre-
gular artifacts were removed from analysis using EEGLAB func-
tions. Eye blinks, other eye movements, and tonic muscle tension
artifacts were not removed at this stage of preprocessing.

Fig. 1. Practice slide from Baron-Cohen's Reading the Mind in the Eyes Test
(www.autismresearchcentre.com/arc_tests).
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2.4. Artifact removal using independent component analysis (ICA)

Data were then concatenated and submitted to full-rank
decomposition by extended InfoMax ICA as implemented in
EEGLAB. Independent components (ICs) characteristic of non-
brain artifact (e.g., eye, muscle, or line noise) by visual inspection
of their scalp topographies, time courses, and activity spectra were
excluded. Next, equivalent dipole models for each IC were com-
puted using a boundary element model that included Oostenveld
FieldTrip functions as implemented by EEGLAB's DIPFIT plug-in.
Pairs of bilaterally symmetric dipoles were permitted to fit ICs
with bilaterally symmetric scalp maps. ICs with scalp projections
having less than 15% residual variance from the best-fit dipole
scalp projection were considered brain ICs. Dipoles that localized
outside the brain volume were excluded.

2.5. Analysis

All ICs, except known artifacts (e.g., eye blinks, eye movements,
electrocardiogram, and muscle) were back-projected to Fz, FCz, Cz,
Pz, Oz, P7, and P8. For each subject, onset of RMET visual stimuli
was set as time 0 ms, average activity between -100 and 0 ms was
subtracted as baseline, and the epochs between 0 and 625 ms from
all 36 trials were averaged to generate single-subject event-related
potentials (ERPs). For each group, single-subject ERPs were aver-
aged to generate group ERPs. Two-tailed independent sample t-
tests were computed for each channel.

Peak amplitudes for single-subject ERPs were computed by
identifying the most negative (or positive) ERP value within the
window starting 100 ms before and ending 100 ms after the
characteristic ERP latency (i.e., 200–400 ms for N300/P300). There
being no evidence to assume linear relationships between peak
amplitudes and PTSD severity, correlations between single subject
peak amplitudes and single-subject CAPS scores were tested using
Spearman's ρ.

For source localization, we first identified dominant ICs—those
responsible for the greatest variance between 200 and 400 ms. In
addition, ICs responsible for variances4half that of dominant ICs
were also included. ICs were then clustered based on anatomical
location, by calculating the Euclidean distance between all dipole
locations and then clustering the results using linkage and
dendrogram functions in MATLAB. Back-projections of clustered
components to Fz, FCz, Cz, Pz, Oz, P7, and P8 allowed for the same
analysis of ERPs and peak amplitudes as previously described for
raw EEG signals for each cluster.

3. Results

3.1. Clinical and behavioral results

Per selection criteria, PTSD severity was significantly higher in
veterans with mTBIþPTSD (meanþSD CAPS scores: mTBI only,
36.8þ13.1; mTBIþPTSD, 82.0þ17.1; po0.001; see Table 1).
Groups did not differ on demographic variables including, age or
education; or on head injury variables, such as mechanism of
mTBI, number of blasts, or mTBI-related changes in mental status,
including loss of consciousness or retrograde amnesia (Table 1).
Behaviorally, groups did not differ on total number of errors during
RMET performance (Table 1).

Groups did not differ on the clinical variables of comorbid
major depressive disorder (MDD), other anxiety disorders, comor-
bid alcohol or substance use or treatment with psychoactive
medications (Table 1). Groups did differ, however, on depression
severity; more specifically, veterans with mTBIþPTSD exhibited

greater depression severity (mean7SD BDI2 scores: mTBI only,
7.177.8; mTBI7PTSD, 2179.9; po0.001; see Table 1).

3.2. ERP results

We observed four ERPs commonly associated with emotional
face processing; more specifically, N1 (P1 at posterior electrodes),
vertex positive potential (VPP; N170 at posterior electrodes), N300
(P300 at posterior electrodes) and late positive potential (LPP)
(Frühholz et al., 2011; Luo et al., 2010; Schutter et al., 2004). The
N300 ERP during emotional face processing tasks is related to
the N2 ERP that immediately precedes the P3 in oddball tasks
described above. Not unexpectedly, we did not observe prominent
P3s during the RMET which, in contrast to oddball tasks, primarily
requires emotional appraisal of facial features.

There were no group differences for P1/N1 amplitudes. In
contrast, compared to mTBI only veterans, mTBIþPTSD veterans
exhibited significantly larger VPP/N170 amplitudes at Fz, FCz, Cz,
Pz, Oz, and P8 (t-test; po0.05; Fig. 2), N300/P300 amplitudes at
Cz, Pz, and Oz (t-test; po0.05; Fig. 2), and significantly larger LPP
amplitudes at Fz, FCz, Cz, Pz, Oz, and P8 (t-test; po0.05; Fig. 2).

Though we observed group differences for both VPP/N170 and
N300/P300 ERPs during the RMET, only the N300 consistently
source localizes to our region of interest—the cingulate cortex
(Albert et al., 2012; Campanella et al., 2013; Zhang and Lu, 2012).
Thus, we focus on N300 negativity in subsequent analyses.

3.3. Correlations

Peak N300 amplitudes from single-subject ERPs were com-
puted by identifying the most negative ERP value between 200
and 400 ms latencies. For all veterans, greater central-medial N300
negativity correlated with greater PTSD severity (Spearman's
ρ¼�0.529 with po0.001 at most significant central-medial
electrode; Fig. 3). Strength of correlation was smaller (�0.466)
but remained significant (po0.01) after controlling for depression
severity. Within group correlations were significant, though smal-
ler, for mTBIþPTSD veterans (Spearman's ρ¼�0.432 with
po0.05; data not shown) but only trended towards significance
for mTBI only veterans (Spearman's ρ¼�0.390 with p¼0.094;
data not shown).

For all veterans, correlations were significant for all PTSD symp-
toms clusters (re-experiencing, avoidance/numbing, hyperarousal

Table 1
Clinical and behavioral variables.

mTBI only (n¼16) mTBIþPTSD (n¼16) P
mean (SD) Mean (SD)

Age, years 29.1 (5.8) 30 (5.4) 0.49
Education, years 14.0 (1.1) 14.0 (1.3) 0.86
RMET, % correct 71 (14.1) 73 (8.8) 0.65
CAPS 36.8 (13.1) 82.0 (17.1) o0.001
BDI2 7.1 (7.8) 21 (9.9) o0.001
MDD n¼9 n¼13 0.25
Other anxiety disorders n¼4 n¼8 0.27
Alcohol or substance use n¼0 n¼3 0.23
Psychoactive medications n¼4 n¼5 1.00
Blast-related n¼15 n¼14 1.00
No. of blasts 12.3 (20.1) 6.2 (7.3) 0.25
LOC n¼7 n¼6 1.00
Retrograde amnesia n¼3 n¼2 1.00

BDI2, Beck depression inventory 2; CAPS, clinician-administered PTSD scale; LOC,
loss of consciousness; MDD, major depressive disorder; mTBI, mild traumatic brain
injury; PTSD, posttraumatic stress disorder; reading the mind in the eyes test; SD,
standard deviation. Significant group differences in bold (independent sample t-
test or Fisher's exact test).
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subscores on the CAPS), but strongest and most significant for
avoidance/numbing and hyperarousal (Spearman's ρ¼�0.564, with
po0.001; �0.513, 0.005; respectively). In fact, correlation between
CAPS and N300 negativity remained significant after controlling for
re-experiencing symptoms (Spearman's ρ¼�0.499; po0.005) but
not after controlling for avoidance/numbing or hyperarousal (data
not shown).

From the 15 anatomic clusters of ICs responsible for the great-
est N300 variance, we tested the significance of the correlation
between N300 negativity and PTSD severity when any one cluster
was removed from the analysis (Fig. 4). Greater N300 negativity no
longer correlated with PTSD severity after removal of cluster 8,
which localizes to the precuneus, and cluster 12, which localizes to
bilateral occipital areas. Cluster 2, which localizes to the PCC, and
cluster 16, which localizes to L sensorimotor areas, were the third

and fourth most significant contributors to the correlations,
though removing either attenuated but did not but did not
eliminate the significance of the correlation (Fig. 4).

4. Discussion

Patients with PTSD consistently exhibit larger ERPs during
processing of trauma-related or emotionally-negative stimuli
(Attias et al., 1996; Bae et al., 2011; Javanbakht et al., 2011;
Johnson et al., 2013; Stanford et al., 2001; Yun et al., 2011). In
contrast, patients with mTBI generally exhibit smaller or slower
ERPs (Broglio et al., 2011; Larson et al., 2012; Larson et al., 2011).
These studies suggest that, in combat veterans with histories of
mTBI, larger ERPs may be specific to PTSD. Consistent with this

Fig. 2. Grand average visual stimulus locked ERPs at select anterior (Fz, FCz, Cz) and posterior (Pz, Oz, P7, P8) electrodes for mTBI only (blue) or mTBIþPTSD (red) veterans.
Asterisk indicates latencies exhibiting significant group differences (t-test, po0.05). Region of interest (200–400 ms) is shaded in purple. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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hypothesis, we observed larger emotional face processing ERPs in
veterans with PTSD after mTBI, compared to those with histories
of mTBI only.

We further observed that larger ERPs in veterans with PTSD
after mTBI primarily arise from the PCC and precuneus—consistent
with posterior–medial cortical areas being over-activated during
processing of trauma-related stimuli in patients with PTSD
(Ramage et al., 2012; Sartory et al., 2013). Though results from
resting studies of patients with PTSD are more mixed, PTSD is also
generally associated increased connectivity between posterior
DMN areas including the PCC and precuneus (Daniels et al.,

2010; Lanius et al., 2010a; Rabinak et al., 2011; Sripada et al.,
2012; Yin et al., 2011). In contrast, patients with histories of mTBI
only do not exhibit over-activation of posterior–medial cortical
areas, including in studies directly examining the DMN (Johnson
et al., 2012; Mayer et al., 2011; Stevens et al., 2012; Zhang et al.,
2012; Zhou et al., 2012). These results raise the possibility that
increased posterior–medial cortical activations may be specific to
PTSD symptoms in combat veterans with histories of mTBI, and is
likely related to negative self-referential activity, including recall
of traumatic memories.

4.1. PTSD-related ERP differences

Consistent with our results, ERP studies of patients with PTSD
have observed larger ERPs during processing of trauma-related or
emotional stimuli in patients with PTSD (Attias et al., 1996; Bae
et al., 2011; Javanbakht et al., 2011; Johnson et al., 2013; Stanford
et al., 2001; Yun et al., 2011). In contrast, ERP differences during
processing of neutral stimuli have been mixed, though patients
with PTSD generally exhibit smaller ERP responses under neutral
conditions, leading both Javanbakht and colleagues and Johnson
and colleagues to hypothesize that patients with PTSD allocate
greater neural resources towards processing emotional stimuli at
the expense of, and actually depleting, resources available for
processing neutral stimuli. Specific to ERP studies of face proces-
sing in patients with PTSD, Felmingham and colleagues did not
observe larger ERPs (Felmingham et al., 2003), in contrast to our
results, though only temporal–occipital electrodes were reported.
Consistent with our results, Ehlers and colleagues reported larger
ERPs consistent with cingulate over-activity (Ehlers et al., 2006),
though potential N300 differences were not discussed.

4.2. Posterior–medial cortical activity in patients with PTSD

The role of the PCC in fear processing is well-established
(Tanev, 2003). Consistent with its role in fear processing, the PCC
is generally over-activated in patients with PTSD during processing
of trauma-related stimuli (Bremner et al., 1999a, 1999b; Driessen
et al., 2004; Lanius et al., 2007). The precuneus is highly anato-
mically and functionally connected with the PCC (Cavanna and
Trimble, 2006) and is similarly over-activated in patients with
PTSD during processing of trauma-related or emotionally-negative
stimuli (Nardo et al., 2011; Whalley et al., 2009). In fact, 2 recent
meta-analyses identified both the PCC and precuneus as among
areas most consistently activated in patients with PTSD during
processing of trauma-related stimuli (Ramage et al., 2012; Sartory
et al., 2013).

Physiologically, both the PCC and precuneus are consistently
and jointly activated during tasks involving self representation, e.g.,
visual-spatial orientation, autobiographical memories, appraisal of
self versus others, and as part of the DMN (Lombardo et al., 2010;
Shannon and Buckner, 2004; Sugiura et al., 2005). Closely related to
their roles in self representation, the PCC and precuneus are also
involved in evaluating threats to physical or mental integrity
(Farrow et al., 2012; Mechias et al., 2010; Pantazatos et al., 2012;
Wood et al., 2012). Specific to patients with PTSD, over-activation of
posterior–medial cortical areas during trauma-related tasks most
likely arises from increased sensitivity to trauma-related stimuli, or
increased responses to trauma-related memories and associated
thoughts and feelings (Ramage et al., 2012; Sartory et al., 2013). In
contrast, patients with histories of mTBI only generally do not
exhibit over-activation of posterior–medial cortical areas, including
in studies directly examining the DMN (Johnson et al., 2012; Mayer
et al., 2011; Stevens et al., 2012; Zhang et al., 2012; Zhou et al., 2012)
—raising the possibility that increased posterior–medial cortical

Fig. 3. All electrodes exhibiting significant correlations between N300 negativity
and PTSD severity are colored red on scalp map in upper right hand corner.
Electrode with strongest correlation is circled in lavender. For all veterans, peak
negative N300 amplitudes from circled electrode is plotted along the y-axis against
Clinician-Administered PTSD Scale (CAPS) scores on the x-axis (Spearman's
ρ¼�0.529; po0.001).

Fig. 4. The 15 anatomic clusters of ICs with greatest contributions to N300 variance
are plotted along the x-axis – in order of their contribution to the correlation
between N300 negativity and PTSD severity – with lowest contributors on the far
left, and the greatest contributors on the far right. For each cluster along the x-axis,
the significance of the correlation with only that cluster removed from analysis is
plotted along the y-axis. Mid-sagittal and mid-transverse images of the clusters are
indicated by color-coordinated spheres—and arrows for clusters localizing to the
precuneus (turquoise), bilateral occipital areas (navy blue), posterior cingulate
(orange) and L sensorimotor area (fuschia). Removal of the cluster localizing to the
precuneus lowers p to 40.2; bilateral occipital areas, 40.1; posterior cingulate,
�0.005; L sensorimotor (fuschia), 40.004. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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activations may be specific to PTSD, and likely related to negative
self-referential activity.

4.3. Limitations

Similar to other published studies of combat-related mTBI, we
rely on subject recall of injuries and course of symptoms. This
limitation, combined with this study being cross-sectional, precludes
a definitive answer to whether greater N300 negativity preceded, or
followed, traumatic events or onset of symptoms. In addition, similar
to veterans receiving treatment at VAs nationally, subjects in this
study were comorbid for multiple psychiatric problems. Importantly,
prevalence of MDD, other anxiety disorders, alcohol or substance use,
treatment with psychiatric medications and head injury variables
were not significantly different between the groups. Correlations also
remained significant after controlling for depression severity, allow-
ing us to conclude that observed differences primarily arise from
PTSD. While our subjects with histories of mTBI only did not meet
categorical and severity criteria for PTSD, mean CAPS score (and
standard deviation) for the this group was 36.8 (13.1), suggesting
presence of subthreshold PTSD symptoms. This limitation suggests
greater N300 negativity is primarily a marker of greater PTSD severity
rather than a categorical marker of PTSD diagnosis—a conclusion also
supported by our correlation analysis.

5. Conclusion

To better understand the neural mechanisms underlying the
negative effects of PTSD on outcomes following mTBI, we tested
the hypothesis that combat veterans with PTSD after mTBI, compared
to those with histories of mTBI only, would exhibit larger ERPs from
the cingulate cortex during a test of empathy requiring emotional
appraisal of facial features. Consistent with our hypothesis, veterans
with PTSD after mTBI exhibited larger emotional face processing
ERPs, including greater N300 negativity. Furthermore, greater N300
negativity correlated with greater PTSD severity. The significance of
this correlation depended on contributions from the PCC and
precuneus—posterior–medial cortical areas responsible for self repre-
sentation. These results are consistent with a model where the
negative effects of PTSD on outcomes following mTBI are associated
with over-activation of posterior–medial cortical areas. Future studies
will focus on how PTSD-related differences in posterior–medial
cortical activity may augment evaluation and treatment of PTSD,
including in combat veterans with histories of mTBI.
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